Handwritten character recognition through two-stage foreground sub-sampling

نویسندگان

  • Georgios Vamvakas
  • Basilios Gatos
  • Stavros J. Perantonis
چکیده

In this paper, we present a methodology for off-line handwritten character recognition. The proposed methodology relies on a new feature extraction technique based on recursive subdivisions of the character image so that the resulting sub-images at each iteration have balanced (approximately equal) numbers of foreground pixels, as far as this is possible. Feature extraction is followed by a two-stage classification scheme based on the level of granularity of the feature extraction method. Classes with high values in the confusion matrix are merged at a certain level and for each group of merged classes, granularity features from the level that best distinguishes them are employed. Two handwritten character databases (CEDAR and CIL) as well as two handwritten digit databases (MNIST and CEDAR) were used in order to demonstrate the effectiveness of the proposed technique. The recognition result achieved, in comparison to the ones reported in the literature, is the highest for the well-known CEDAR Character Database (94.73%) and among the best for the MNIST Database (99.03%) & 2010 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Devanagari Isolated Character Recognition by using Statistical features

In this paper, we present a methodology for off-line Isolated handwritten Devanagari character recognition. The proposed methodology relies on a three feature extraction techniques. The first technique is based on recursive subdivisions of the character image so that the resulting sub-images at each iteration have balanced (approximately equal) numbers of foreground pixels, as far as this is po...

متن کامل

Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten

Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...

متن کامل

Ambiguity Reduction through Optimal Set of Region Selection Using GA and BFO for Handwritten Bangla Character Recognition

To recognize different patterns, identification of local regions where the pattern classes differ significantly is an inherent ability of the human cognitive system. This inherent ability of human beings may be imitated in any pattern recognition system by incorporating the ability of locating the regions that contain the maximum discriminating information among the pattern classes. In this cha...

متن کامل

Segmentation of Offline Handwritten Bengali Script

Character segmentation has long been one of the most critical areas of optical character recognition process. Through this operation, an image of a sequence of characters, which may be connected in some cases, is decomposed into sub-images of individual alphabetic symbols. In this paper, segmentation of cursive handwritten script of world’s fourth popular language, Bengali, is considered. Unlik...

متن کامل

بازشناسی برخط حروف مجزای دست‌نویس فارسی بر اساس تشخیص گروه بدنه اصلی با استفاده از ماشین بردار پشتیبان

In this paper a new method for the online recognition of handwritten Persian characters has been proposed which uses a set of simple features and Support Vector Machine (SVM) as a classifier. The task of preprocessing allows us to equalize feature vectors from different characters. This algorithm is implemented in two steps. In the first step, input character is classified into one of eighteen ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2010